ANL/EAD/TM-114

OpenLink: A Flexible Integration System

for Environmental Risk Analysis and Management
]

Environmental Assessment Division
Argonne National Laboratory @)
Operated by The University of Chicago,

under Contract W-31-109-Eng-38, for the

United States Department of Energy

Argonne National Laboratory

Argonne National Laboratory, with facilities in the states of lllinois and Idaho, is
owned by the United States Government and operated by The University
of Chicago under the provisions of a contract with the Department of Energy.

This technical memorandum is a product of Argonne’s Environmental Assessment
Division (EAD). For information on the division's scientific and engineering activities,
contact:

Director, Environmental Assessment Division
Argonne National Laboratory

Argonne, lllinois 60439

Telephone (630) 252-3107

Presented in this technical memorandum are preliminary results of ongoing work
or work that is more limited in scope and depth than that described in formal reports
issued by the EAD.

Publishing support services were provided by Argonne’s Information
and Publishing Division (for more information, see IPD’s home page:
http://www.ipd.anl.gov/).

Disclaimer

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor The University of Chicago, nor any of their employees or officers,
makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views and
opinions of document authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof, Argonne National
Laboratory, or The University of Chicago.

Available electronically at http://www.doe.gov/bridge

Available for a processing fee to U.S. Department of
Energy and its contractors, in paper, from:

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062

phone: (865) 576-8401

fax: (865) 576-5728

email: reports@adonis.osti.gov

ANL/EAD/TM-114

OpenLink: A Flexible Integration System
for Environmental Risk Analysis and Management

by D.J. LePoire, J. Arnish, E. Gnanapragasam, T. Klett,
R. Johnson, S.Y. Chen, B. Biwer, and C. Yu

Environmental Assessment Division
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439

October 2001

Work sponsored by U.S. Department of Energy

<9 This report is printed on recycled paper.

CONTENTS

N S I 2 O PP 1
1 BACKGROUND AND INTRODUCTION.....ccoiiiiiiintirieninee et 1
2 OPPORTUNITIES AND GOALS. ..ottt 2
3 TECHNOLOGY ASSESSMENTcoiiiiiiectieteseeeesiesie st se e sre e sneens 5
31 Criteriaand ISSUES........ooueiiiirie ettt b e e 5

I © o 1[0 0 TSR P PP URPRR 6

3.3 PropoSad SOIULIONcueiiieeieeieie et 9

G TR Nt R I 1Y = U RTPSRRPRIN 9

G 1 o == TSR 11

3.3.3 New and Existing Software Developmentccccevereneneneneneseeee 12

4 TECHNOLOGY DEMONSTRATIONS.......coi ettt 13
4.1 COMPONENES.....eiiiitieiitieeesteeeesieeesteeestee e sbee e ssbeeessbeeasseesaaseessseessbeessbeesssseesnssessnseeas 13
g O R |V oo = SRS SRPRS 13

A.1.2 PrESENLALIONcieeieeiieeesieeiesieesee e ee st ste e sreesteseesaeesbeeneesseesseesesneensens 15

TG T B T - WSS ST 16

O S 1 A1 4 USSP 16

4.1.5 Integration and CONNECLIONS..........ceireerierierienienieseee e 17

4.2 Integration Demonstration ProjECES..........cviveieeieeieere e 17
421 Low-Leve Landfill Analysiswith DUST and RESRADc.ccecevuennene. 18

422 MARSSIM AnalysiSWith RESRADcccccceiiveriseceeieesese s 20

4.2.3 NUCHAEWED SEIVICE.......ooiiieiee e 24

4.3 FULUIE ..ttt ettt ettt s ae e e bt e e st e e e e e s st e e nbe e ens e e be e saneebeannnas 26

5 CONCLUSIONS.... .ottt sttt sttt b bt e e b et e b et e e b e 28
51 Demonstration ASSeSSMENt VErsuS Critelia.......ccoouuererereeieeiieiesiesese s 28

5.2 Technology Uncertainties and RiSKS.........ccceviiieerieieiiie e 29

5.3 Organizational Uncertainties and RISKS..........ccooriririiinineceeeeese e 30

6 RECOMMENDATIONS.......ooiiiirertsenesee ettt s 32
7 REFERENCES........cco ettt ettt st neene s ens 35

10

11

12

13

14

FIGURES

Goals for the Open Environmental Modeling System, OpenLinkKc.ccoovverieeeeenne. 10
Four of the Five Layers of the Modularization Approach to Model Development 10
Roles of Those Who Develop and USe SYSIEM........cccooiiiririnineneceeeeeesee e 12
Integrating Models, Data, and User INterfaces.........ocevveeveenenie s 14
Integrating RESRAD-OFFSITE and DUSTcccooiiiiireiireneneeeeee e 19
Constructing a Custom INEEITACE.oviiirereeeee s 20
Integrating User Interface Formsinto RESRAD-OFFSITE Interface........ccccceeeeveeeneee. 21
Wrapping RESRAD for MARSSIM ANAlYSIS........ccoueieiieiecieseesie e e sse e sneeeas 22
Integrating the RESRAD Component to an Interface Input Web Page............cccccueueee.e. 23
Connecting Graphics Packages to Results Database............ccoveeeeeieerienenienese s 24
Developing and Using a.NET Nuclide Web Service........ccocevveveieevesceeseece e 26
Constructing a Simplified Object-Oriented Version of RESRAD.........cccceeevevcienennnnne 27
OpenLink Sharing of Models, Data, and Interface Components...........ccoceeeeverreeneeenne 33
OpenLink’s Dynamic FeedbaCk SysStem..........ccccveiiiieenieie e 33
TABLE
Criteriafor Three System ArchiteCtUreS..........cooveiieie e 7

OPENLINK: A FLEXIBLE INTEGRATION SYSTEM
FOR ENVIRONMENTAL RISK ANALYSISAND MANAGEMENT

by

D.J. LePoaire, J. Arnish, E. Ghanapragasam, T. Kl ett,
R. Johnson, S.Y. Chen, B. Biwer, and C.Yu

ABSTRACT

Most existing computer codes for modeling environmental pathways were
developed to satisfy a specific objective (e.g., perform analyses to demonstrate
regulatory compliance). Over time, the codes have been written in various
computer languages and software environments that are often not compatible with
each other. In recent years, largely driven by advances in industrial software, a
new concept for software development based on modularization has emerged.
This approach entails the development of common modules or components that
can be shared by and used in different applications that have certain common
needs. Although modularization promises advantages over the traditional
approach, a number of issues must be fully addressed and resolved before the
approach can be accepted as a new paradigm for environmental modeling. This
report discusses these issues, provides demonstrations of open integration
techniques, and provides recommendations and a course of action for future
development.

1 BACKGROUND AND INTRODUCTION

Most existing computer codes for environmental pathway modeling were developed to
satisfy a specific objective (e.g., perform analyses to demonstrate regulatory compliance). Over
time, the codes have been written in various computer languages and software environments that
are often not compatible with each other. In recent years, largely driven by advances in industrial
software development, a new concept for software development based on modularization has
emerged. This approach entails the development of common modules or components that can be
shared by and used in different applications that have certain common needs. For instance, an air
dispersion model could be written into a common component to be shared by several different
applications, each with the need to model air dispersion of some release. When fully devel oped,
the modeling application would become an exercise of selecting, integrating, and applying a
consistent combination of appropriate modules for a specific problem. Although modularization
promises advantages over the traditional approach, a number of issues do exist. These issues
must be fully addressed and resolved before the approach can be accepted as a new paradigm for
environmental modeling. This report discusses these issues and provides recommendations and a
course of actions for future development.

Traditionally, model connections have been made by the end user, who aligned one
model’s output data with another model’s input. Often the model assumptions and
conceptualizations were stretched to accomplish the linkage, resulting in greater uncertainty in
the results. Also, the connection usually required the user to invest effort in manipulating the
data for proper communication (e.g., taking data from the first model’s output and manually
editing the input for the next level), resulting in inefficient use of resources and introducing
another potential source of error. It is generally difficult to connect models because of their
disparate assumptions about scale, conceptualization, aggregation, process, reality, and
objectives. Systems in other disciplines have been developed by using function libraries and
toolboxes to prepare and manipul ate data.

2 OPPORTUNITIESAND GOALS

In the environmental field, modeling plays a critical role in connecting current data and
knowledge with predictions of future events and environmental states. Environmental problems
are quite challenging to solve because of the complex relationships among many contributing
factors, both natural and man-made (Constanza et al. 1993). Moreover, these problems need to
be addressed not only by environmental engineers and regulators but also by concerned members
of the public and nongovernmental organizations. Their demands on environmental modeling
often conflict because predictions need to be accurate yet easily understood, communicated, and
explored. The increasing complexity of environmental codes aso places a demand on the end
user, who must trandate the real environmental problem into the conceptualization allowed by
the model and its options. Information on assumptions and options must be conveyed to the user
to ensure that the model is applied and interpreted correctly. Open communications about the
model, interface, and data components would enable software applications to be more easily
developed.

The complex and conflicting goals placed on environmental modeling are illustrated in
the U.S. Nuclear Regulatory Commission’s (NRC's) recently stated goals of an environmental
modeling system:

* Maintain safety and protection of the environment,

» Increase public confidence,

* Increase efficiency and effectiveness of decisions, and
* Reduce unnecessary burdens on stakeholders.

Many modeling approaches could be used to realize these goals. For some purposes, the
most detailed models and data are appropriate to predict a situation. However, the results from
these models might not facilitate a good understanding of the situation, or they might place an
undue burden on the stakeholders as they try to learn how the models work and they try to gather
sufficiently verified data. Moreover, the results might not be directly integrated into regulatory
processes, so an interpretation of the results, although accurate, would be difficult to accomplish.

Another approach is to use simplified models with conservative values for data to
facilitate an understanding of the results and to place bounds on them. This approach enables the
end user or interpreter to focus on the important issues. Many regulatory processes include this
type of analysis to help users explore the issues and decide whether a more detailed analysis is
justified.

There is a wide gap between these two approaches and between their contributions to
understanding and the decision-making process. Both can be enhanced with tools that allow
sensitivity analysis, uncertainty analysis, and visualization and manipulation of the data.

When these considerations are taken into account, it might be reasonable to expect that a
range of models and also a range of integration strategies are available. On the detailed side of
modeling, the emphasis might be placed on manipulating large, standardized data sets covering
gpatial and temporal dimensions. The emphasis on the user interface and regulatory requirements
could be less, since the end user would be assumed to be more cognizant of the assumptions and
therefore more responsible for constructing valid model input. Other times it might be important
for the user to just to “scope out” a situation and determine the mgor exposure and risk
pathways. This situation might be enhanced by a very flexible system that would alow the end
user to easily explore the simplified models. Another emphasis might be on the need to develop
some components that could be used in detailed and mid-level modeling environments that
require intermediate modeling sophistication and in guiding the user through the regulatory
process. These different modeling needs might require some shared models but different
integration environments. This requirement could be met by developing various user interface
components and standards, process flow standards, data management and sharing tools, decision
support tools, and model linkages so that these models could become more flexible, efficient,
and effective.

Not only are the demands for environmental modeling changing, but also the means to
accomplish this modeling are being developed and quickly changing. Many of these means to
accomplish modularization and integration are based on the supply of new information
technologies (1Ts) originally developed for businesses. IT technologies, such as those for object-
oriented code development, network-based distributed processes, database storage and
manipulation, graphical user interfaces (GUIs), work-flow processing and communication,
geographic information systems (GISs), and graphical visualization, have become available for
integration into environmental modeling in recent years. These tools and techniques, which
required large investments by commercial vendors, are available relatively inexpensively
because of the demand from the business community. Software packages for environmental
modeling should take advantage of these tools and techniques in responding to the field’ s unique
needs and demands. The emphasis should not be on redeveloping industry standards but on
meeting environmental modeling’ s unique needs by leveraging these tools and techniques.

3 TECHNOLOGY ASSESSMENT

3.1 CRITERIA AND ISSUES

If a next-generation risk-modeling environment is to be successful, it must address a
range of needs and issues. Although a single integration platform (fixed-platform) approach
offers a step forward in addressing modularization needs, it also has a number of shortcomings
that must be addressed for it to be successful and gain widespread acceptance. Identified issues

related to the fixed-platform system are discussed in the following list.

Flexibility and maintenance: The rigidity of the framework alows little
flexibility for incorporating “foreign” components not conforming to the
framework specifications, that is, the fixed-platform has difficulties
interacting with components developed outside platform specifications. The
requirement to model a range of conceptualizations for a range of user needs
leads to the demand for a more flexible system.

Software dissemination: The fixed-platform system and its components are
installed separately and cannot be distributed in a single package for
application. Barriers to the dissemination and installation of the code package
(data, software, and documentation) must be low to ensure a large base of
users who can leverage their common understanding and share their
experiences. Software dissemination should also be tied to Internet
maintenance for auser community.

Quality assurance (QA): The QA of individual components can be done by
the developers, but the user has to bear the burden of ensuring that the QA of
the integrated application is properly done. For legacy (existing) computer
codes, significant effort has to be expended to convert these codes into the
fixed-platform system in order for them to be functional. The fixed-platform
system allows no flexibility in this regard. This particular drawback could
potentially hinder interagency collaboration in terms of committing future
resources for code conversion. Thisissue also relates to the system’s ability to
be validated and verified.

Life-cycle development and maintenance costs. Long-term cost savings might
be anticipated from using this approach rather than the traditional
development approach. However, the tota life-cycle development and
maintenance costs would depend on future needs and are yet to be evaluated
and assessed. More effective and efficient approaches (discussed in the
following section) might become feasible, thereby rendering the fixed-
platform obsol ete.

Platform reliance: The rigidity of the platform structure would compel future
code developersto rely totally on the system, thereby discouraging competing

existing software to be included. Additionally, since the system offers no
“future-proof” assurance, its technology would be prone to change in the
future. This would be a serious flaw for federal agencies interested in
Investing in along-term, stable system.

e Transparency. This issue is tightly bound to the user interface and
documentation and sometimes conflicts with the complexity of the site being
modeled and realistic goals. To be transparent, both the moddl itself and its
implicit and explicit assumptions must be understandable. Many times,
detailed, complex, realistic models are difficult to understand. Sensitivity
analysis helps but can aso obscure combinations of parameters that are
driving the results. The level of the model’s conservatism versus realism
should also be clear. Such knowledge affects public acceptance and
confidence if the model isto be publicly used or defended.

» Ease of use: There are different requirements for ease of use, depending on
the task and frequency of use. Some applications might be infrequently used
and need to implement a specific process for regulations. Other applications
might be designed for a relatively inexperienced user to explore a problem.
Still others might demand in-depth knowledge of the assumptions and might
be applied quite frequently. After these factors are taken into account, there is
a set of genera heuristics to consider when developing and designing user
interfaces.

3.2 OPTIONS

Various options are available for implementing a more flexible environmental modeling
environment. These include (1) continuing with the current status quo approach, (2) adopting a
single model-, data-, and user-interface-integrated framework, and (3) using separate tools to
integrate models, data, and interfaces. On the basis of our experience and discussions about three
types of software architecture, we created a table listing the criteria and attributes of each
architecture (Table 1).

In the current approach, features, tests, and documentation are added in a piecemeal
fashion. The interface, data, and model are integrated for a specified set of objectives. The end
user's experiences and contexts are considered when the model options, interface, and result
visualizations are being designed. This process tends to encourage code that is unwieldy, as new
features are added without the code being redeveloped and modularized. Software breakdown is
not similar to mechanica breakdown (i.e., initial break-in period, period of stable performance,
and then mechanical wear), because software does not wear down or change. However, by
introducing changes to the software, undesired entropy can be easily introduced into the original
design. Technologies in the software application environment can change, causing more effort to
be expended just to maintain operation of the software. This situation does not necessarily occur
in object-oriented software. Reliance on some commercially developed tools can lead to a need

TABLE 1 Criteriafor Three System Architectures

Criteria Current Approach

Open Architecture

Specified Visual
Programming Framework

Description Features, tests, and
documentation are added in
piecemeal fashion. Interface,
data, and model are integrated
for a specified set of objectives.

Maintainability Since modular design was not
the main focus, it is sometimes
unwieldy to integrate and test

new functions.

Dissemination At user'sinitiation to download

and install

Vadlidationand Verification isdone for a

Validation can be done on
limited aspects of the model.

verification compl ete specific version and
(V&V) maintained incrementally.
Flexibility Adding new features and

functionality is difficult,
requiring changes throughout
the code and careful
consideration of many of the
obscure details of the code.

Useof legacy Itisvery difficult to integrate
software two legacy codes and maintain
the assumptions and user

interface.
Support for Itisvery difficult to maintain
cooperation one code that serves two

agencies with different

requirements.

Development Development isinefficient
costs because new features must be
highly customized for each

application.

Development and testing are divided into
three levels: modules, integration, and end
use. This approach allows module reuse
and swapping and provides the ability to
develop flexible end-user interfaces and

data management.

Modules are maintained by the

developers. Standards are agreed to and
followed in module and data specification.
Integration can be done in anumber of
ways depending on the requirements.

Modules can be distributed with the
integrated application. Later modules can
be maintained on distributed servers.

Each module maintainsitsown V&V.
Applications connecting the modules are

done by integrators who ensure

assumptions are appropriately compatible

for the application V&V.

Modules can be added, substituted, and
modified with flexible connections to
other modules. This practice alows for

Development and testing are
divided into two levels:

(1) modules and (2) end-user
integration and implementation
through asingle visual
programming framework.

The framework must have one
specified standard. All codes
must go through the standard to
be incorporated.

Framework and modules are
installed separately.

Modules can be V&V'd, but V&V
of the integration processis up to
the end user.

Modules can be added aslong as
they fit the framework’s fixed
structure. Modules cannot be

flexibility in both the module level and the flexibly integrated for other

integration level.

Legacy code can be “wrapped” for use
with other codes. Some functions can be
called separately. A modularized version
of the model would be more flexible.

Modules and data can be shared for
different applications. Different

applications can be constructed with the
shared modules to accommodate the
different requirements of the agencies.

Modularization and structural flexibility
lead to efficient reuse and development of
modules while maintaining an efficient

user interface.

potentia integrating frameworks.

It is difficult to incorporate legacy
code without alarge effort to
modularize it to conform to the
framework's fixed structure.

All agencies can develop their
own modules, but they must
conform to the framework
structure. It may be difficult to
construct one structure to satisfy
the needs of all agencies and
organizations.

Modularization leads to more
efficiency, but effort can be
expended on conforming the
modules to a structure that is not
efficient and effective.

TABLE 1 (Cont.)

Specified Visual
Criteria Current Approach Open Architecture Programming Framework

User interface Support isgood sincetheuser The flexibility of the connectionsallows The end user can gain

support for interface can betailored to process and user interfaces to be well understanding through quick
regulatory control theinput and reporting ~ defined. exploration of models; however,
processes process. to implement regulatory

processes, the user must invest
effort to visually program the

process.
Platform Platform is dependent on the The modules can be platform independent. Platform is very dependent on the
independence operating system (OS) and The connections between them are structure of the framework.
developer'stools. Development flexible and can be implemented with Development can be hindered by
can be hindered by uncontrolled many technologies. incompatibilities of the model or
changes by the supplier of the process to be used and the
OS and integrated development framework.

environment (IDE).

to constantly upgrade even well-written software, just to maintain its operation in a changing
technological environment.

In a single integration framework, development and testing are divided into two levels:
(1) development of modules and (2) end-user integration and implementation through a single
visual programming framework. This framework works as long as it is flexible enough to meet
various needs. However, it is very difficult to leverage new technology within the framework,
since the user-interface, data manipulation, and modeling connections are already specified and
implemented. This system can facilitate the exploration of a specific environmenta problem by a
single end user but can cause difficulties for a user community whose members are trying to
follow a regulatory process. Also, the burdens of model integration and application are on the
end user. (Frames 1.1 and GoldSim [Whelan et a. 1997; Whelan and Nicholson 2001] are
examples of this type of system.)

Quite alarge set of tools is being developed to further separate the roles of modelers and
integrators and the four components (data, models, interface, and connection). Some model
integration tools include the Argonne National Laboratory (ANL) DIAS system (Sydelko et al.
1999) and the U.S. Environmental Protection Agency (EPA) MIMS system. These tools offer a
system of utilities for model integration and data communication. The DIAS tool is based on the
concept of using models to provide methods for a higher-level conceptualization of an object.
This allows both new development and the wrapping of existing models. However, there are
many other ways to accomplish this wrapping and object integration with commercia tools
(J2EE, ColdFusion [Forta 1998], Microsoft [MS] .NET [Hollis and Lhotka 2001]) that might not
supply the same utility support but allow aflexible integration with commercial components.

Besides these model integration tools, there are also tools that allow user interface and
data management module reuse and swapping. The user interface and visualization aspects are
crucial and difficult to construct with automated tools. The interface usually requires a great ded

of customization to ensure that users understand the data, options, work flow throughout the
process, and model assumptions.

One commercia system that seems to have a good approach is the Environmental
Systems Research Institute ArclM S system (ESRI 2001), an Internet-based system for supplying
GIS maps and data. The main map-rendering application is deployed on a server. The devel oper
works with this service and is supplied with a default set of tools to develop a user interface for
the manipulation and display of the maps. The interface components are object-oriented but
written in a client scripting language (JavaScript). This alows the component provider (ESRI) to
provide aflexible template to the integrator to customize the user interface for the end user.

3.3 PROPOSED SOLUTION

The proposed solution includes developing strategies and guidelines for separating the
software package components into a set of layers and identifying roles for model development
and use. The strategies can apply to both the modification of existing codes and practices and the
development of new models and components.

3.3.1 Layers

Like the traditional approach toward code development, the modularization approach for
developing a complete modeling package usually consists of five generally distinct elements
(Figures 1 and 2):

1. Application layer: Integrators form specific combinations of components that
apply to a range of end-user purposes yet still facilitate understanding or
demonstrate compliance. The components are selected and connected from
modeling, data, and interface support.

2. Presentation layer: This user-friendly interface facilitates understanding
through guided input and presentation of results.

3. Model layer: Models are encoded by developers to describe physical
phenomena. Other models might be used to control the functionality of the
calculations (e.g., uncertainty analysis).

4. Data layer: Data are collected to support parameters and anayses that are
used in models. Issues to be addressed include how to store and transfer the
data that the models need.

5. Network layer: This layer connects distributed data and components and
supplies the communication tools to integrate them.

10

Model
Interconnection

Model Reuse/
Modularization

@

Web
Services

Use of
Commercial
Visualization
Tools

=
Flexible User

Interfaces

FIGURE 1 Goalsfor the Open Environmental Modeling System, OpenLink

Application Layer Presentation Layer Model Layer Data Layer
Use?tsh“‘.it]jze theﬁ?PPdljfa‘tm Integators publish applications that Wodelers publish distributed Agensies publish dta that
& vt 51 e-?j;c 7 eaa o connect compatble models and software components that follow follow standards (e g, XML

monstrate and corumumicate e s ey friondby interface that standards (e.g, COMICORBA) formatting) that are maintained
complisnce and understanding : ;
follows a specified procedure that cormect tothe data sources on distriuted systerns
Site Contami GIs
; ontaminants | Base
Specific Input | | H Eﬂp - Data
Data
terials
Options + Hgﬁd
Process ‘
(Generation| ;
Interactive Results + P | Epecific
Data
Commun-
ication |Vlsuallzat10n & GIS‘ XML Based
Cotrrmunication

FIGURE 2 Four of the Five Layersof the Modularization Approach to M ode
Development (Components can be developed in the presentation, model, and
data layers. They areintegrated in the application layer by a variety of tools
and techniques.)

11

While the traditional method integrates these elements into a single code, the modularization
approach instead aims at building a code system consisting of components that can be used and
reused for various purposes.

Over the last six years, a group of agencies (U.S. Department of Energy [DOE], NRC,
EPA, U.S. Department of Defense [DOD], and others) has been informally discussing the
problems in linking models for complex simulations of the environment. This group met in
March 2000 for the Environmental Software Systems Compatibility and Linkage Workshop
(Whelan and Nicholson 2001). The group has continued its work, and members attended a
meeting in June 2001 to discuss understandings, accomplishments, and future paths. One
objective was to establish categories of attributes for software systems. These included a set
somewhat similar to the standard layers described above:

* Modéd connectivity (model layer),

» Information architecture (data layer),

* Framework connectivity (presentation layer),
» Web-based access (network layer), and

» System functionality (application layer).

3.3.2 Roles

Three sets of roles are proposed for developing and using the system (Figure 3). First,
modelers should develop domain-specific models and document their assumptions. Second,
integrators should create an application from the available models and data. The integration
environment would be up to the integrator (i.e., there would be no single integration framework,
so the system could be done in a web environment [e.g., Active Server Pages or ColdFusion], as
a window standalone, or as a hybrid using web services). Third, end users should then specify
the data and options through the integrated user interface and communicate the results to the
regulators and public.

The models should be available for all to use with technology like an application
programming interface (API) for amodular class library or like a set of services (data and model)
from a server. Use of generic commercial technology would allow components developed in
different laboratories with different software languages to be integrated. This coordination would
require the laboratories to work cooperatively in defining appropriate scales, aggregations, and
assumptions. The effort would include the development of new models and data and the opening
of existing codes.

To maintain the most flexibility and cost-effectiveness, the integrators should leverage
commercia technologies. There are quite afew commercial tools to support these tasks, and the
technology is rapidly changing, being mostly driven by business software. These tools can be

12

Modelers construct models and
publish assumptions, input required,
and available functions. Source code
is not necessarily published.

Integrators construct applications
from available models and data to
implement regulatory processes with
an easy to use interface.

End Users for specific sites. Can
also involve managers, decision
makers, regulators, and the public.

FIGURE 3 Roles of Those Who Develop and Use System (Components can be
developed by modeler swho specify the assumptions and QA the models. The
componentsareintegrated for a specific application by integratorswho QA the
integrity of the model assumptions. End users select model options and
conceptualizetheir casesand sites.)

utilized in these systems so that the focus can be on the models and data and on facilitating user
understanding for effective decision-making.

3.3.3 New and Existing Softwar e Development

In this paradigm, an interagency committee specifies the standards for communicating
between codes and establishes the minimum validation and verification (V&V) process required
for individual components. Code developers at specific agencies or institutions maintain control
over their own sources but use the specified standards for “exposing” their codes for inclusion in
other applications. While this approach would work best with new code devel opment, methods
for “wrapping” legacy code that allow reuse of existing code are available. This structure would
make it possible to embed distributed components within everything from simple spreadsheet
applications, to commercia GIS packages such as ArcView™, to a visua programming
environment, if that was desired.

Taken one step further, components for modeling, presentation, and data access could be
maintained at remote locations through the use of MS COM objects or Java serviets. Their
integration could be accomplished with software tools such as CORBA, DCOM, and RMI.
Communi cation between components could be accomplished with APIs using evolving standards
such as Interface Definition Language (IDL) and eXtensible Markup Language (XML). The use
of distributed objects would even make it possible for object components and data to exist on
different distributed servers, guaranteeing that the user would have access to the most recent,
validated version of that code and supporting parameter data sets.

13

4 TECHNOLOGY DEMONSTRATIONS

Technology options in the various levels (data, models, presentations, applications, and
network) were explored, and demonstration projects were created to show and evaluate their
potential. This effort was not just model integration (e.g., connecting the output from one model
to the input of another). It constituted package integration, since each applications package
usually comes with a data set, a set of models, and an interface to interact with the data and
model specifications. The process of integrating packages involves model integration
(connecting inputs into outputs with the appropriate control structure), data integration
(determining which subset of data to use and how the remaining data get mapped), and
presentation integration (determining what inputs are required, how to maintain support, and how
to view and navigate the output). The connection adds one new aspect: how to integrate the
components separately and then integrate the levels into a new package. Since the packages
might be served from different locations, a new aspect of network connection also isinvolved.

4.1 COMPONENTS

Traditional software packages are custom integrations of models, data, and user
interfaces. Sometimes the model is somewhat separated from the user interface. Sometimes the
data are stored in a flexible format; other times, they are highly formatted and depend on the
model. To ensure a chance of integrating software packages, it is important to separate these
components. (Existing software packages usually cannot be integrated directly, and they must at
least be separated into components.) These separated components can then be integrated (i.e.,
models with models, data with data, and user interfaces with user interfaces). Only then can the
integrated components be further integrated into a software package (Figure 4).

4.1.1 Modds

In the modeling area, the DIAS system offers a conceptual framework for flexibly
connecting models. It stresses the separation of the data, model, and interface while maintaining
network accessibility transparently. The conceptual model has been implemented in an actua
system that was Small-Tak-based and recently migrated to Java. The technology for creating
such systemsiis still developing, and it is quite possible to develop model, data, and presentation
components that are independent of thisimplementation and connected with system tools.

The DIAS concept is to encapsulate models as object methods. The objects can then be
quite general, allowing the integrator to choose from appropriate models to provide the method.
The integrator can also select how the data needs of various models are trandated into an
integrated data model and how the user will interact with these data needs. The models can be
wrapped in many ways, alowing for different levels of data specification and assumptions (e.g.,
using full-blown multilevel contaminated zones or simply using a template file and alowing the
concentrations to be specified).

14

FIGURE 4 Integrating M odels, Data, and User I nterfaces (Softwar e packages [sides]
must be separ ated into user interfaces [GUI], data, and model components before
integration. Theintegrated packageisformed in atwo-step process. integrating similar
component types and integrating different component types.)

To use this technique, the data support, modeling methods, and presentation are generally
separated at first. Wrappers around the model supply the necessary object methods. The objects
are sometimes difficult to choose because of the internal assumptions within the codes. If the
original codes are integrated, the options for connecting various models may be few. If the
models are more modular, there are more options. For example, in environmental modeling, a
time-dependent contaminant and transport media flux (e.g., water) between two physical zones
(e.g., unsaturated and saturated zones) is usually sufficient to connect models.

However, often a single, comprehensive model is easy to construct but inefficient to use
in alarger modeling system. For example, a generalized external model might require significant
computation time. If the exposure geometry is constrained (e.g., contaminated soil with a person
standing on top of the soil), the computation time could be greatly reduced by using a more
specific model. The specific model is constructed by determining an appropriate way to
precal culate some intermediate results that could be used in the constrained model. In this case, it
would be useful for an external model to have three methods: a full external model, a limited
external model, and a model to prepare the data the necessary for the limited model from the full
model.

Allowing models to be encapsulated as general objects enables them to be used by many
different integrators to design environments of their own choosing. For example (as described
further in Section 4.2.2), a RESRAD object was created and placed on a web server. It was
wrapped with a data template file for a typical problem in the Formerly Utilized Sites Remedial

15

Action Program (FUSRAP). The method required only data on radionuclide concentrations and
returned dose versus areain aplot. This same RESRAD object was used with the typical data set
and input/output GUI. This example demonstrates the flexibility of allowing different integration
techniques (in this case, MS COM, ColdFusion, PopCharts, and ArciMS).

Standard data communication between objects can be defined, or, through wrapping,
modified as needed if sufficient data are provided. Data communication can be local through API
calls or across the Internet by using XML. Some HTTP protocols exist to make this
communication transparent. MS web services allow an easy transition from a locally called
method through argument passing with the Simple Object Access Protocol (SOAP), which
trang ates arguments and method results into XML for communication through HTTP.

New models should be developed with modularity in mind. For example, the RESRAD-
BUILD code was highly functionally decomposed in FORTRAN, allowing for simpler
conversion to object methods. The RESRAD code is now being incrementally functionally
decomposed and separated. In the meantime, the fluxes of contaminant and transport media are
being written and read at interfaces between physical media. An example of a fully object-
oriented, simplified RESRAD code was written to demonstrate what it might look like.

4.1.2 Presentation

User interfaces that are not used very frequently but are used to build public confidence
or meet regulatory requirements must provide access to assumptions, data support, and data
Interpretation support to facilitate understanding. Tools used to build data support in the interface
include context-specific help, sensitivity analysis, uncertainty analysis with default distributions,
data validation, data visibility depending on selected options, data feedback presented in graphs
and diagrams, and data feedback that presents a state (e.g., default or site-specific). Many data
elements are not totaly independent of each other. For example, there are many nuclide-
dependent parameters. Some codes have options for users to select from many different sources
of default values (e.g., state-dependent).

Constructing user interfaces that meet many criteria is difficult and has been known to
consume a large fraction of the effort expended to model codes. Even when current-generation
languages such as VB are used, the proper construction of customized interfaces can be tedious
and error-prone. Some devel opers have opted for a generic data grid approach to user interaction.
This is useful for certain circumstances where variables are not strongly interdependent.
Interdependence can arise from various options, selection of details, and validation techniques.
This grid interface approach does not allow multiple pathways for specifying data, as do
RESRAD-BUILD’sand MILDOS' s GIS-type systems.

The goa of the interface component development was to automatically support a variety
of features yet maintain the flexibility to support custom layout, visual feedback of data, and data
dependencies. This goal was accomplished by designing a small set of interface control
components that could be easily attached to a database. The output results from a code should be
readily available in both textual and graphic forms and be available for use in other codes.

16

Commercial tools that can be customized to support visualizations such as graphs and GIS
displays are available.

The interface components were demonstrated in the RESRAD-OFFSITE-DUST
connection for the DUST portion of the user interface using MS VB controls. The same concept
was applied to an Internet-tag dynamic server system in the ColdFusion implementation of the
MARSSIM application for RESRAD.

The output connections are demonstrated in the MARSSIM connection to POP-Charts
and the RESRAD connection to ArcIMS.

4.1.3 Data

There must be a set of data to support the calculation and interface. It should include the
user values, default values, upper and lower bounds, and distributions for uncertainty analysis.
The data passed to the actual model might be the default data if the model does not allow user
input, or the data might be constructed from other input if the model depends on other models
inputs. For example, in the RESRAD-DUST connection, the data requirements to estimate
radionuclide migration for RESRAD are precipitation, irrigation, and runoff; the data
requirement for DUST is Darcy velocity.

To pass these data, XML can be used transparently through SOAP. The models can also
be wrapped so that only part of the data is exposed for the model and user specification.
Different data sources must be tracked; for example, an independent DCF library might be
created, and special attention might be paid to reassert various default values (i.e., the current
value must be kept, and sometimes the state of a default object must be kept).

These data techniques are demonstrated in the databases constructed for the DUST code
and the partial database used for the MARSSIM demonstration. The effort required is greater for
RESRAD, since the input data have traditionally been stored in flat NAMELIST files. The
wrapping translates the database to the NAMELIST file to maintain the code without rewriting.
However, the database affects the ease of maintaining functionality and constructing user
Interfaces.

The output should also be kept in the database so it can be displayed to users in textual or
graphical form or be used further in another model. This condition was demonstrated in the
RESRAD and RESRAD-BUILD uncertainty analysis database, where the flat files were read to
construct a database of input and results that was nearly self-descriptive.

4.1.4 Network
There are many ways to connect users or give them access to web-enabled applications,

ASP, CF, and CGI are just a few examples. These techniques can also use some of the interface
techniques described earlier. When there is good separation of the interface, data, and models,

17

the delivery mechanisms can be quite flexible, as demonstrated by the RESRAD/MARSSIM
example. The RESRAD code is web-enabled and collects input from a browser constructed from
a database that specifies the input and generates an output graph.

Although there are many standards (e.g., RMI, CORBA, DCOM), new technologies are
still being introduced to overcome various limitations. These web services run over HTTP
protocol, alowing more flexibility and ease in connection. Some integrated development
environments (IDEs) alow for easy incorporation of distributed services such as MS Visual
Studio.NET. These web services allow programs and databases to easily communicate by using
standard protocols like SOAP and XML.

For example, the nuclide service was developed on a .NET service. The user can easily
find it and download its API and structures to an application that can use the object and methods
much like a local piece of code without having to worry about firewalls. The communication is
automatically donein XML.

4.1.5 Integration and Connections

There are many ways to connect models. Wrapping and abstraction to object models were
discussed. These model objects may be expressed as libraries that can be easily incorporated into
an integration package (e.g., COM or dynamic link library [DLL] objects in MS applications or
through web-based ASP/ColdFusion-type languages). Depending on the granularity of the
model, there might be great flexibility in connecting it (e.g., the demonstration RESRAD-Object
model), or limited flexibility (e.g., DUST model), or in-between flexibility (e.g., RESRAD-
OFFSITE with intermediate flux results).

One view would be to have the integrator be responsible for integrating the disparate
models, data, and interface components into packages, assisted by the techniques described to
ensure compliance with processes, assumptions, and data availability and to generate results that
are defendable, understandable, and flexible enough for further processing.

4.2 INTEGRATION DEMONSTRATION PROJECTS

Three demonstration projects were chosen both to address a current need among
radiological analysts and to be potentially useful in later applications. The projects demonstrate
the wide variety of integration techniques and ways to use components based on existing
software packages, new models, and commercial components.

* Low-level landfill analysis: Using the NRC’'s DUST (Sullivan 1993) package
and a modified RESRAD-OFFSITE package (Yu et a. 2001), the models
were integrated into a desktop application, with DUST providing a leaching
source term to the groundwater and RESRAD providing the multipathway
dose assessment from that point. The user-interface and model assumptions
were maintained.

18

* MARSSM analysis with RESRAD: The RESRAD model was wrapped with a
preprocessor and postprocessor for web execution. The pre- and
postprocessors allowed simple connections to a customized, ssimplified, web-
based user interface and commercial visualization graphing and GIS packages.

* Nuclide web service: A nuclide data component was developed to allow
common access to applications of data structures. The nuclide data were
obtained from a distributed server and used by a local application that could
then manipul ate the nuclide structure in a common technique.

4.2.1 Low-Level Landfill Analysiswith DUST and RESRAD

The integration of RESRAD-OFFSITE and the DUST computer code allows users to
perform risk analyses of potentia releases of low-level radionuclide landfills. The integration
was made possible because the RESRAD-OFFSITE model has a feature that allows intermediate
contaminant fluxes to be output or serve as input for the remainder of the calculation. In this
case, the DUST code was used to generate a modeled release flux at the bottom of the landfill.
This flux was then used by RESRAD-OFFSITE for dose risk analysis through the groundwater
pathways, including the drinking water pathway and pathways associated with the use of
contaminated irrigation water.

To accomplish this integration, the user interface, model interface, and data components
had to be separated for each model. Then each component was integrated and packaged in a new
application. This practice maintained the data integrity, model assumptions, and ease of use
(Figure 4).

The DUST data, model, and interface were separated into three components by designing
a database to maintain the metadata of the input parameters. This table included names, units,
values, and bounds and could potentially include the grouping and distribution of the data for
uncertainty analysis. From these data, RESRAD-OFFSITE was wrapped to allow the user to
specify specific configurations of input/output flux planes and the remainder of the input
parameters (Figure 5). The output files could be parsed for specific information to be passed to
the next software component. The database formed a simple common connection for managing
and storing data.

User interface components were developed in both MS Visual Basic and Allaire's
ColdFusion. In Visual Basic, the developer could place one of the controls on a form and then
associate it with a record in the parameters database table (Figure 6). The appropriate data type
and functionality were then automatically packaged in the control. In ColdFusion, the database
was likewise used to form data input screens on the basis of a generic database table. Since the
user interface is important in communicating model assumptions and facilitating the user’s
understanding of the model, its development is usualy costly. (Sometimes more than half the
development time is devoted to custom-developed user interfaces that use standard components.
The use of the custom controls and a custom database should enhance the development of user
interfaces and reduce the cost of integrating them.)

19

Groundwater

FIGURE 5 Integrating RESRAD-OFFSITE and DUST (The RESRAD-OFFSITE
mode was modified to accept and output fluxes at certain pointsin the transport
process, including at the groundwater tableinterface. The DUST results of the fluxes at
thislocation were passed to RESRAD-OFFSITE for further transport and radiological
data and risk estimates.)

20

Nuclide da__i;a

=y

------ 4 Vs s sy
P b e T
ettt Tazt 1Ry

Integ ratedTDatabase

210

Metadata of Model Data Needs

FIGURE 6 Constructing a Custom Interface (The parameter table and nuclide data
tables provide a way to quickly construct a custom interface by using a data-bound
custom controal.)

The user interface can quickly gather data from a user and display them in the database
(Figure 7). To wrap the code, the input data must be extracted from the database and passed to
the model. Unfortunately, many existing models use a set of formatted input files to pass data to
the calculations. This practice makes the conversion from the database to the model difficult,
although ideally it only has to be done once to wrap the component. The conversion from the
database to the DUST input file was tedious because of the formatting, data array structures, and
exceptions. Some other codes like the RESRAD family of codes use the FORTRAN
NAMELIST format, which alows flexibly formatted input files somewhat similar to simple
XML files (i.e., the parameter name and values are passed without a highly specific format). A
full wrapping of the RESRAD or RESRAD-OFFSITE code was not performed; however, in the
second project, this technique was used to pass a subset of the RESRAD data through a similar
database and onto the wrapped code, which used the database to modify a template NAMELIST
input file.

4.2.2 MARSSIM Analysiswith RESRAD
MARSSIM is a recent multiagency procedure for finding statistical determinations for

radiological cleanup standards. These standards are based on the statistical level of the detector
and dose estimates from finite contaminated areas. RESRAD was developed to address cleanup

21

Wastelorm Loaching Propesta:

Radonuchde [fia 226 -
/

View Lol Flegons [Fiaguans 15 =]

Larlill Fluggn 1 Magion | hickness fim o= [+] e

Surlace Releara Fraction e = unitles

@& g
3 - ieryes ol
2 ' .
T a
eaipen fraevion UNRIES | ol Ragion & Hogion TH g
Pastition Coefficient [0 o/cm” Landill egenS Regin Th Fadure 1ype i Genesal and Local]

Local Fadure o smetens

Ditfuvion Coethcent ,07 om” 2/ Cont Thickness
Frachonal llelease Rate ,ni 1y Pitting Paismetes N

U
o

Fitting Fasametes K fo emly"N
o

Surlace Aica
Area Sealing B unitlens

Fenetiatsn per Conlamen 0] anitlevy

FIGURE 7 Integrating User Interface Formsinto RESRAD-OFFSITE Interface (User
interface forms are developed for DUST input.)

guideline limits for a set contaminated area. As the contaminated area increases, the dose from
the contamination reaches a limit. For smaller areas, the doses are smaller as a result of various
scaling factors for the different pathways, such as direct external exposure, food growing
activities, dust inhalation, and ingestion. To support MARSSIM activities, RESRAD could be
used to generate the dose (or guideline limit) as a function of area. These guidelines could be
displayed on a graph and then interpreted on a GIS display of the site with overlain
measurements.

While there is a current technique for performing this type of analysis, it is not explained
in the RESRAD manual, nor is it afunction that the RESRAD interface was designed for. Also,
the data visualization of RESRAD was not prepared for easy incorporation into graphs and GIS
systems. The purpose of this project is to demonstrate the ssimple reuse of an existing software
application (RESRAD) by wrapping it into an object with a database-driven interface to alow
use of custom interface controls. The database interface also allows for easy integration of the
model into commercia visualization packages for plotting and GIS. Furthermore, the results can
be made accessible on the Internet through a simple web browser interface, giving users easy
access to the model, data, and visualizations.

The following steps were taken to wrap RESRAD for this project (Figure 8):
* A template RESRAD input file that contained most of the default input values

for the problem was made. The case was set up to include uncertainty analysis
of the contaminated area parameter based on alog-uniform distribution. When

22

Database
Input
Specifications

Database Terrlipllate
Output e

Area Uncertainty

FIGURE 8 Wrapping RESRAD for MARSSIM Analysis (Stepsinclude creating the
mode DLL, developing atemplatefor the caseincluding an uncertainty analysis, and
using a database interface with pre- and postprocessor modules.)

this case was run, the results from the series of RESRAD calculations with
different contaminated areas were stored in the standard uncertainty text file.

* A simple FORTRAN DLL to cal the RESRAD system batch file was made.
This alows the system call on the server to become synchronous (i.e., the call
to the DLL waits until the program has finished executing before continuing
with further processing).

* A generic Visua Basic preprocessor module was developed to read values
from the parameter table in a database and place them in the appropriate
places in the RESRAD NAMELIST input file. As mentioned before,
NAMELIST input is much smpler to handle than formatted flat files.
NAMELIST files are similar to XML files in that they are text-based and
associate the parameter name and attributes such as value.

* A generic Visua Basic postprocessor module was developed to read the
RESRAD results and insert them into an appropriate database table.

For a code like RESRAD, once these tasks are complete, the resulting modules can be
incorporated into a MS COM object for running on the server or made into a VB executable to
be called through something like ColdFusion’s <CFEXECUTE> statement.

Next an input and output interface must be developed for the system (Figure 9). The
interface can be quickly developed through the interface components for ColdFusion. The

23

Server

RESRAD ColdFusion
Model User Interface

Database

Graphing Mapping
Application Application

FIGURE 9 Integrating the RESRAD Component to an I nterface Input Web Page
(developed in ColdFusion) and Two Commer cial Visualization Packages (PopCharts
and ArclMS)

Coldrusion template file contains setups for all enabled parameters from the specific database
table. The data are collected and validated from a generated HTML page. The user sends the
specified input data through the Submit button. On the server, the data are placed in the database,
the RESRAD component is executed, and the results are stored in the database.

There are many alternatives for viewing the results. ColdFusion and similar technologies
(such as Active Server Pages) have suites of tools for customizing a drilldown report in HTML
or in a reporting tool like Crystal Reports. Other commercial tools can generate a more visual
display. For this project, the PopCharts Internet graphing package (Corda Technologies, Inc.
2001) and the ArcIMS Internet GIS package were connected to the results database (Figure 10).
PopCharts allows results data to be quickly incorporated into a graphing template to show the
area factor versus area. The ArcIMS GIS package similarly allows measurement data to be
displayed with symbols (type, sizes, colors) on the basis of the measurement level compared to
the critical cleanup criteria identified in the analysis. Both of these tools were implemented to
generate standard HTML pages. The ArcIMS tool uses extensive JavaScript to enable the user to
interact with the map that communicates the data via XML to the mapping server. The
measurement data are placed in an acetate layer on top of the map, while the user is still able to
interact with the measurements and find out more about them by clicking on them.

This simple demonstration showed how to wrap an existing code, simplify the interface
and its construction, and use commercial visualization tools to view al the data integrated on a
server. Many extensions could enhance this project: the component could be optimized for
performance on a web server; input options could be made available to the user; and the user
could be allowed to manage the GIS data more. As is the case for most software development
projects, many options are available, but the choice depends on the tradeoffs among data access,
complexity, and security involved with a specific project.

24

=: et = = = = S} Untitled - “bcrasoll Internet Diplorer R =101 x|
W itestint - Microsolt Intermet Explorer B 200 M £t Vew Fowtss Tods bew =
Fle Edt Vew Favorites Took Heb . it - = DD A Dt Areetn Peey | - 2 - s §
tack - » -) [2) 4| Qewch [aFwormes (PHstoy - 3 1D - o ks ;|| Adwse 8] teo: et et o govivesr by sohia it = e
Address @] hitp:jfweb. ead. arl. govirestadimanssim testin.cfm j oGal =
i » THI28
Thickness of Contarnmated Zone |2 m ‘ ! L
“over Depth [0 m ok
Hydraubc Conductraty (Unsaturated) |10 miyr | 4
8 18
Mass Loadng for Inhalanon | 0001 &y N B4
| 1] = 9
‘recipitation |1 fyr 11l 3] R
Precipitation s | d b
Thickness of Unsaturated Zone [4 m | .
4 =,
| . - >
e re—————— 4 0 i A i .
Address |-E| hetp: (g ead.anl goviwebste L DROME est faswer . ofm [] 50 100 150 00
1 | Lr_J
Done B Internet
Legeny
dine
F s wmm
c N
o M e
C A hysmiogy
N
c - sondy
L] Ratresh Map |
’ | N
\ f %
Mgt S ey 100 4 e e

FIGURE 10 Connecting Graphics Packagesto Results Database (I nput and output web
pagesfor the MARSSIM project show the simplified RESRAD input interface and the
resultsvisualization.)

4.2.3 NuclideWeb Service

The previous two projects demonstrated integration on a desktop and integration on a
server with web access. Some research modeling environments use components on a set of
widely distributed computers. These distributed computing environments allow standard
components to be maintained on a few servers that are optimized for performance and
maintained with the current versions. Data and models from various sources can be easily
connected, and the data can be communicated across the network.

It would be useful to have a set of data sources for contaminant standards or specific data
sources from sites that could be integrated and analyzed by means of model and visualization
techniques. Tools are currently being developed to facilitate these connections while till
maintaining system performance and security. Early connections were difficult to develop and
maintain. Even after the connections were constructed, there were frequent disruptions in them
resulting from new security techniques such as firewalls (which block communication for
standard connection techniques such as DCOM, CORBA, and Java RMI). One example of a new
type of tool is the MS .NET web service that is to be released in late 2001. This technique
utilizes a standard SOAP protocol to connect components on distributed computers. The
communication between the computers is performed by using other standards: XML for the data
structure and HTTP for the transmission protocol.

25

Not only do these services facilitate the use of distributed components, but they aso
enable simple integration of components. For example, a web service developer can generate a
.NET web service by simply constructing an object in the standard MS Visua Studio Integrated
Development Environment (VS IDE) by placing a <webMethod> tag in the method to be made
available for the service. A test page and site are automatically generated to ensure proper testing
and availability of the component.

To use or “consume” this web service, an application integrator can use the same VS IDE
on alocal development machine. To find out what services are available from a particular server,
the VS IDE can simply request that information from the server and present the results, which
are integrated into local components available to the integrator. In other words, the web service
looks similar to local components. From then on, the development of the integrated package is
transparent. Calls are written to the remote object, and the developer no longer has to be too
concerned about the computer “handshaking” and passing of datavia XML to the server.

Nuclide databases might be a good candidate for a web service. In radiological
assessment software, the handling of nuclide data is difficult because of the decay chains and
different assumptions about secular equilibrium. Also, some data are quite standard, like the
EPA’s Federa Guidance Reports (FGRs 11, 12, and 13). It would be useful to have a web
service supply the datain acommon form with common functions. Local components could then
be generated and shared to handle the nuclides in a common fashion, so that radiological codes
could better interact with similar assumptions and handling mechanismes.

A simple web service was set up with a limited set of nuclide data to demonstrate their
workings (Figure 11). A method that would take input on a radionuclide and deliver decay chain
information was developed. The data were recursively extracted from two database tables. One
had the nuclide information (e.g., mass, half-life, dose conversion factors, and potentially
distribution coefficients for various media). The second detailed the decay relationship, with
primary key fields for the parent nuclide and the progeny nuclide and also afield for the yield (or
fraction of the decay that followed that decay path).

These data were automatically inserted into an XML package to be sent back to the
requesting computer. Once received, the computer would automatically unpack the XML
package, and the data would be ready for use in the local machine. In this project, the data were
organized into a linked list of nuclide structures for easy handling in codes. For example, in
many radiological codes, the decay process is now handled through many indices that are very
difficult to maintain and update. The linked list is ssmpler to handle and less error-prone, and it
facilitates ssimpler code because indices have been removed and because it can be manipulated
with recursive techniques.

These codes were implemented with the Public Beta 1 version of MS .NET. Figure 11
shows the web service method, the testing page from the server, the consumer software, and the
consumer interface. Again, not much is shown, because much of the infrastructure that is needed
to implement this web service is within the .NET environment, a commercialy available

26

_MNuclide Deacay Info Service ! =01 e iz
Choose aradionuclide: ; 2 3 - 4 -
Ac-227 -] R ot
Show Praduct Infa £
L s T e = il oF
Nuclide Name: HalfLife: Mass: . e S e o e I o a5
[ac227 [[227 e e —— -
R e TS =
| Muclide Name: HalfLife: Mass:
|Th-227 I o
| MNucide Name: HalLite: Mass:

[Fr-223 |o o

v

FIGURE 11 Developing and Using a .NET Nuclide Web Service (The object and methods
areplaced on theserver. A web page allows manual checking of the function and
demonstratesthat XML isused to deliver theresults. Inthe MSVSIDE, thereferenceto
thedistributed components can be easily found and inserted. These componentsareused in
the codein amanner similar to that in which the local componentsare used. Theresulting
application allows accessto distributed data that are used to construct an easily handled
linked-list nuclide structure.)

integration package. MS is not the only package available; there are also Java-based packages. It
is hoped that through the use and deployment of standards such as SOAP and XML, these web
services will be able to interconnect and operate on a variety of servers.

4.3 FUTURE

As new models and packages are developed, some guidelines and standards will help
developers design models to be incorporated into larger systems. For example, a simplified
object-oriented version of RESRAD’s models was constructed (Figure 12). This system will
need quite a bit more work before it will be available in this manner for incorporation into a
larger system. But the use of components demonstrated here to separate the data, model, and
interface has great potential for new models and applications. Before that happens, existing
packages can be separated and wrapped in a manner similar to that demonstrated with RESRAD,
RESRAD-OFFSITE, and DUST.

27

Receptor RRCase Source R ES RAD
InhalationRate N A
Type{adult, child} *RRSource
*RRReceptor RRSource CalcParms
Environment__ — " -
CalcParms Cayar Title
A DoseRecord ?r ea File
t Units
/ *Time
RRReceptor | IntegrationLevel
. Uncertainty
Location] e
IngestionRate / Sensitivity
ExposureTime
Diet
LandUse L\ Environment
DoseRecord IRun-oﬂ' / “Layer _r Atmosphere
: rrigation |~
Pgtmy Fong_‘{ie_lds 1 —-><|_ Atmosphere .
Receptor tSoilMix Layer LandUse WindSpeed
Source tRootDepth W Preo::lp!ta_tlon
Pnuclide tWeather Porosity Humidity
. tGrowth Nensity
Dnuclide
Dose

FIGURE 12 Constructing a Simplified Object-Oriented Version of RESRAD
(Possibilities exist for creating new modelsthat ar e object-oriented-based and
offer greater potential for component-based systems. A smplified RESRAD

model wasimplemented in an object-oriented fashion. However, much work
isrequired to make a full system with the same data and user interface

capabilities.)

28

5 CONCLUSIONS

5.1 DEMONSTRATION ASSESSMENT VERSUS CRITERIA

The projects demonstrated a small

Section 1 follows here:

Flexibility and maintenance: The system’s flexibility was demonstrated when
a similar component (RESRAD) was both incorporated in a desktop model
integration package and integrated on the web with commercial visualization
tools for a different purpose. This integration alows a wide variety of models
and end users to be supported. As new components are developed, it is
anticipated they will interact so that the applications can be modified to
incorporate new model options, data input options, result viewing options,
regulatory changes, and tools quickly and efficiently. The open integration
environment alows commercial tools to be incorporated rapidly and new
Internet options, such as web services, to take advantage of software and
hardware (e.g., bandwidth) technologies.

Software dissemination: Barriers to the dissemination and installation of the
code package (data, software, and documentation) vary. For desktop systems,
some installation packages are initially large but can be reduced for upgrades.
Web-based systems require little or no software installation other than a
standard web browser. Again, web services also require little or no software
installation and also allow local specialized maintenance of the components
and data at the distributed sites, so they can be updated without requiring users
to download patches. The web-based nature of the download and software
package alows web-based user communities to grow, which can generate a
critical mass for the use of the component systems.

Quality assurance (QA): The quality of individual model and data
components can be assured by the developers. The integrity of the model and
data assumptions in the integrated package can be checked by the integrators.
Thus, data validity and scenario applicability are left to be determined by the
end user. This distributed QA can be more effective, but procedures should be
in place to properly document the models so that QA remains intact
throughout the process. Development of a large user community would allow
discussions and testing of various features and application contexts.

Life-cycle development and maintenance costs: There are always tradeoffs in
determining how general a component should be. The flexible system of
component integration allows trials to determine the granularity level to which

part of the potentia for component-based
environmental modeling with open integration. Components were developed for the user
interface, data handling, model wrapping, connection via desktop, web server, and distributed
computing environments. An assessment of this system with regard to the issues mentioned in

29

the components should be specified. For example, some models, such as an
external exposure model, might require a generally inefficient model and
methods that use preprocessing to make the model more efficient for a more
constrained problem. Long-term cost savings might be anticipated from this
approach over the traditional development approach. However, the total life-
cycle development and maintenance costs will depend on future needs and
have yet to be evaluated and assessed.

» Platform reliance: As the projects demonstrate, there are many ways to
construct, integrate, and execute components. The technologies being
developed are becoming more and more open, which means there is less
dependence on any one technology. However, as previous component
development suggests, there are pitfals, especially when components are not
upgraded and integrated with commercial technologies.

» Trangparency: Tools can be integrated for both data exploration and
facilitating understanding (e.g., sensitivity analysis, uncertainty analysis, and
visualization [graphing and GIS]). By incorporating a middle-layer integrator
role, the system will present the end user with an integrated package that can
preserve the model’ s assumptions, level of data, and conservatism while still
implementing changes in the regulatory process. This type of package will
enhance public acceptance and confidence if the model needs to be publicly
used or defended.

» Ease of use: The flexible integration technique, coupled with the devel opment
of interface components and a standard metadata database structure for input
parameters, means that user interfaces can be effective (i.e., customized for
the needs of the user by being facilitated through the components). Work on
the user interface will still be one of the main efforts in model package
development, but the use of the components and commercia packages will
allow interfaces that will convey an understanding of the model and its results
to the variety of stakeholders who are using the environmental modeling
system.

5.2 TECHNOLOGY UNCERTAINTIESAND RISKS

Many technology uncertainties and risks surfaced earlier. Many of these issues are
addressed by an open system where (1) there is separation of the modeler and the integrator and
(2) the modeling and integration tasks can be done with different tools. Such a system also
allows a transition pathway that utilizes existing code while concurrently developing new
module code. It also allows the integrator to focus on the user’ s specific need, whether it isfor a
detailed analysis without a “big picture” understanding or the ability to navigate around issues
while applying regulatory requirements to analyze a specific site.

30

Incorporating many integration techniques a so reduces the possibility that environmental
models will require a large effort to maintain with the latest technologies and tools. The example
of wrapping old FORTRAN codes into objects demonstrates that these techniques allow codes to
be used over awide range of technologies. Using commercial tools and standards allows much of
the work to be done by others.

There are some drawbacks, however. Sometimes the technology can be under such rapid
development that an integration system might depend on a commercial tool that is supported for
only a short amount of time. It is hoped that the components could be developed to be flexible
enough so they could be easily incorporated into the new system. A couple of examples of this
situation are found in running the FORTRAN code within the RESRAD system. Originadly a
way was found to run the calculations in the background and still maintain communication with
the user interface, which allowed for integrated feedback on the status of the calculations. As the
MS operating systems changed from Windows 3.1 to the current Windows version, in aimost all
upgrades, this code for accomplishing the integration of the model and interface had to be
revisited to ensure proper operation. This effort was complicated by the fact that the wide user
base meant that many Windows operating systems were being used at the same time, so a way of
operating the integration system in not just the new environment, but in al the prior operating
systems, had to be found.

Another example was a Java applet written for Internet mapping applications that
depended on the server providing the connection to the database. The language rapidly changed,
and substantial effort was required to upgrade the original code. In time, the data connection
utility was supported and sold only for the new versions of the language (and then dropped, as it
was no longer needed in the newer versions). The origina applet code was thus somewhat
inflexible, depending on the obsolete commercial component, unless effort was made to upgrade
the versions of the language.

Also, as technology progresses, changes in application requirements occur not only in
response to changes in environmental applications or regulations but also in response to
technology changes. Just recently, many requirements have been imposed on government web
sites with regard to accessibility to those with disabilities, security, and privacy. However, not all
the requirements were imposed with the impending increase in the bandwidth of the Internet in
mind. New technologies and techniques based on the connection speeds of the networks will
become available.

5.3 ORGANIZATIONAL UNCERTAINTIESAND RISKS

The environmental modeling situation is quite complex because of the range of
stakeholders involved in environmental problems. These include government agencies,
regulators, end users, model developers, integration developers, and public citizens and
organizations.

Government agencies are involved with both the generation and implementation of
regulations and with the analysis of internal environmental problems. To meet these needs, the

31

agencies have funded model and application developments. The agencies have often funded
similar modeling efforts for dightly different needs. They hope that there might be a consensus
in the model and application development. In the open system, the same model could be used to
implement different regulations and workflows. Also, as demonstrated by the use of RESRAD in
MARSSIM, anaysis models can be wrapped with different interfaces for a variety of uses.

End users must be continually trained in the software to reduce misapplication of the
models. With so many components and integration techniques available, end users might be
driven into “information overload,” and a critical mass of the users of an application system
might not develop, leading to situations where the model might be misapplied. One of the main
reasons for the open system, however, is to customize the interface to meet the needs of a
particular end user. The Internet could be used to support the user and develop a user community
(providing a platform for supplying information about new components and versions,
downloading, discussions, and sharing of data). Also, various work-flow processes could be
implemented on the web (which has been done for the Environmental Impact Statement
Comment Response System) to allow communication among users, modelers, and regulators.

Regulators must be able to determine a model’s applicability, verify data, and gain an
understanding of problems through further analyses, such as sensitivity and uncertainty analyses.
They are assisted in this process by knowing that end users are provided with a standard user
interface equipped with these tools and are given access to standard data. Again, if the system is
too flexible, regulators will expend effort investigating the integration of the models, data, and
analysis tools instead of the environmental problem itself. This effort could be somewhat
aleviated through the QA process for both the constituent models and the integration techniques,
especiadly if those who understood the model assumptions and the interface integrated the
models to maintain compatibility. The integrated package could then be subjected to further
V&V processes. If alarge user community is formed, the package would be scrutinized through
quite afew applications.

Model developers risk generating models and components that might not be compatible
with other integration systems. A way to work around this problem is to wrap models in a
different way to alow integration. However, sometimes the basic assumptions used in the
models mean that they cannot be integrated with another set of models. This problem cannot
generaly be resolved.

Integration developers (integrators) must try to keep the cost of the infrastructure they
develop less than the benefit. They must also concern themselves with developing an application
that meets the specific needs of the users at the time of development yet has the flexibility for
adding new components for new options later. This dual goal involves tradeoffs that can be
reduced but never eliminated.

32

6 RECOMMENDATIONS

Component-based environmental modeling offers many advantages as long as the
hazards in developing the system are dealt with. An open system of components and integration
techniques offers the hope of addressing issues in an open and shared environment to leverage
existing codes in multiple integrations. An open system allows the sharing of models, data, and
interface components for many integration techniques (Figure 13).

One such application of this open system would be to integrate the models and data into a
flexible system that would be able to deliver information and facilitate understanding over along
period of time. The models and data could be integrated into the decision-making process and
field measurements to elicit dynamic feedback on the environmental state of the system, the
model, and the supporting data. This feedback loop is depicted in Figure 14 for the long-term
stewardship application.

On the basis of the above discussion, the following four recommendations are made:

1. Develop an interagency consensus on future modeling needs. It should be
recognized that while modularization of the code offers rather attractive and
promising features, it till represents a relatively long-term research and
development effort. The relevant software technology has begun to emerge
only in the past few years and has yet to mature. There is no immediate
urgency to commit government resources to a final format or system for
development. Rather, it would be prudent to first form an interagency
committee to evaluate and agree upon future modeling needs within the
context of the currently available or promising software technologies. Given
the limited resources of each agency, it is important to reach a consensus,
identify priorities, and assess long-term cost ramifications for such an
endeavor before a decision is made.

2. Maximize the use of technologies developed by the software industry. The
commercial software industry has spent billions of dollars in developing
Improved software technologies in a rather competitive business environment.
These technologies are constantly evolving. They are readily available and
adaptable for use by the government sector. It is advisable that, given the
circumstances, development of model modularization be derived directly from
the open market. Caution must be exercised before committing any
government resources to similar areas of development, to avoid potential
duplication of efforts that have already been made by the industry. Rather,
effort should be made in tracking and evaluating the adaptive nature of the
emerging technologies for use.

33

OpenLink

Web/
Commercial FRAMES

ECO-Lego

FIGURE 13 OpenLink Sharing of M odels, Data, and I nterface Components (A
flexible and effective system could be developed by sharing models, data, and
interface components by following some guidelines and allowing integratorsto
connect the componentsinto applicationsfor various stakeholdersand uses.)

Regulations
Model | Future Risk l
® Assumptions
.Dafa —{ Concentration l
T Decision
Cleanup
Comparison
Monitoring
>

FIGURE 14 OpenLink’s Dynamic Feedback System (The OpenLink system could
enhancethe ability of environmental modeling to assist in the long-term stewar dship
decision-making process by facilitating an under standing of the design of the cleanup
and monitoring activities.)

34

3. Maintain the integrity of legacy codes. While future software development is
being pursued, it is paramount that the collective experience and knowledge
represented by the tens of hundreds of existing legacy codes be retained and
utilized. Since each code has been subjected to various degrees of QA, the
already-established integrity must be preserved in the modularization process.
The new system should accommodate such preservation.

4. Minimize dependence on a particular system. Considering how fast
technology in the software industry is evolving, it isimportant that any system
to be developed be very flexible and future-proof. This condition should
encompass a rather wide spectrum of parameters, including computer
language and architecture. Such an environment would be free of barriers and
would virtually remove the dependence on a particular system that needs to be
constantly modified or maintained. For this reason, it is advisable to evaluate
the current environment for a suitable technology, such as the open-
architecture environment discussed above, that may satisfy these
requirements.

35

7 REFERENCES

Constanza, R., et a., 1993, “Modeling Complex Ecological Economic Systems,” BioScience 43,
Sept.

Corda Technologies, Inc.,, 2001, PopChart Online Documentation, Lindon, Utah,
http://www.corda.com/support/docs/, accessed Sept. 2001.

ESRI, 2001, ArcIMS 3, Redlands, Cadlif., http://www.esri.com/software/arcims/, accessed Sept.
2001.

Forta, B., 1998, The ColdFusion Web Application Construction Kit, Que, Indianapolis, Ind.

Hollis, B., and R. Lhotka, 2001, VB.NET Programming with the Public Beta, Wrox Press,
Birmingham, U .K., Feb.

Sullivan, T.M., 1993, Disposal Unit Source Term (DUST) Data Input Guide, NUREG/CR-6041,
BNL-NUREG-52375, Brookhaven National Laboratory, Upton, N.Y., May.

Sydelko, P.J., et a., 1999, “A Dynamic Object-Oriented Architecture Approach to Ecosystem
Modeling and Simulation,” in Proceedings of the 1999 American Society of Photogammetry and
Remote Sensing (ASPRS) Annual Conference, Portland, Ore., May 19-21.

Whelan, G., et al., 1997, Concepts of a Framework for Risk Analysis in Multimedia
Environmental Systems, Pacific Northwest National Laboratory, Richland, Wash., Oct.

Whelan, G., and T. Nicholson (editors), 2001, Proceedings of the Environmental Software
Systems Compatibility and Linkage Workshop, Draft, Pacific Northwest National Laboratory,
Richland, Wash., June.

Yu, C., et a., 2001, User’'s Manual for RESRAD Version 6, ANL/EAD-4, Argonne National
Laboratory, Argonne, Ill., July.

36

